Constructing an integrated circuit, or any semiconductor device, requires a series of operations—photolithography, etching, metal deposition, and so on. As the industry evolved, each of these operations were typically performed by specialized machines built by a variety of commercial companies. This specialization may potentially make it difficult for the industry to advance, since in many cases it does no good for one company to introduce a new product if the other needed steps are not available around the same time. A technology roadmap can help this by giving an idea when a certain capability will be needed. Then each supplier can target this date for their piece of the puzzle.[1][2][3]

With the progressive externalization of production tools to the suppliers of specialized equipment, the need arose for a clear roadmap to anticipate the evolution of the market and to plan and control the technological needs of IC production. For several years, the Semiconductor Industry Association (SIA) gave this responsibility of coordination to the United States, which led to the creation of an American style roadmap, the National Technology Roadmap for Semiconductors (NTRS).[4]


The first semiconductor roadmap, published by the SIA in 1993.

In 1998, the SIA became closer to its European, Japanese, Korean, and Taiwanese counterparts by creating the first global roadmap: The International Technology Roadmap for Semiconductors (ITRS). This international group has (as of the 2003 edition) 936 companies which were affiliated with working groups within the ITRS.[5] The organization was divided into Technical Working Groups (TWGs) which eventually grew in number to 17, each focusing on a key element of the technology and associated supply chain. Traditionally, the ITRS roadmap was updated in even years, and completely revised in odd years.[6]

The last revision of the ITRS Roadmap was published in 2013. The methodology and the physics behind the scaling results for 2013 tables is described in Transistor roadmap projection using predictive full-band atomistic modeling which covers double gate MOSFETs over the 15 years to 2028.